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SUMMARY

On the basis of the potential flow theory, Lagrange’s equation of motion is used to study the unsteady
ground-effect problem. The forces and moments acting on the moving body are solved in terms of the
derivatives of added masses in which the generalized Taylor’s formulae are applied. The singular integral
equations used to solve the surface source intensities and their derivatives are regularized by the Gauss
flux theorem and are therefore amenable to the direct use of the Gaussian quadrature formula. In
illustration, the condition of a prolate spheroid moving in the fore-and-aft direction at constant speed
past a flat ground with a protrusion is considered. The hydrodynamic forces and moments acting on the
moving spheroid are investigated systematically by varying the size of the protrusion and the cruising
height of the spheroid. © 1998 John Wiley & Sons, Ltd.

KEY WORDS: unsteady two-body interaction; potential flow theory; boundary-integral method; Lagrange’s equation
of motion; generalized Taylor’s formula

1. INTRODUCTION

The study of hydrodynamic interactions between two bodies has received much attention for
several decades, either in the unbounded fluid domain [1,2] or in the fluid field with a free
surface [3]. The applications extend to a variety of topics, such as the impact of floating ice
floes with the protrusion, the motion of ships in restricted waterways, the operation of vessels
near a pier, submersibles moving near the seabed, and so on. As long as the corresponding
bodies are not very close together, the potential flow theory will provide acceptable results.
There are several methods with which to approach the associated topic. The first category,
which is virtually an extension of the thin-wing theory, uses the slender-body theory combined
with the technique of matched asymptotic expansions. Tuck [4,5] initiated the procedure and
studied the steady motion of ships in shallow water. The lateral motion of a slender body
between two parallel walls was treated by Newman [6]. It was found that the walls generally
increase the magnitude of interaction forces and moments on the body. Tuck and Newman [7]
considered the situation where vessels are stationary in relation to each other and the flow is
steady. The dynamic effects on a moored vessel resulting from the passing of another ship were
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Figure 1. Interaction of two bodies.

solved by Wang [8]. The forces and moments were evaluated by application of the Lagally
theorem. King [9] treated unsteady interactions between ships in very shallow water and used
a Kutta condition on moving bodies. In contrast to previous authors, Yeung and Hwang [10]
carried out the nearfield interactions of ships in shallow water. Therefore, a detailed knowledge
of the hull geometry is required. Other versions of the theory and its applications can be found
in the works of Yeung [11], Hess [12], Yeung and Tan [13], Davis and Geer [14] and Davis [15].

The second approach is the boundary-integral method combined with Lagrange’s equation
of motion. Chow et al. [16] presented the results for the velocity potentials, added masses and
several of the hydrodynamic force and moment coefficients for a spheroid emerging into a fluid
from an infinite, moving plane. The Kelvin–Kirchhoff form of equations of motion for a
moving body in the presence of other fixed boundaries is due to Miloh and Landweber [17].
Landweber and Chwang [18] generalized Taylor’s added-mass formula and [19] applied the
theory, coupled with the equation of motion, to the case of a floating rectangular cylinder
approaching a fixed circular cylinder. Guo and Chwang [20,21] further extended the method to
study the hydrodynamic effects of two circular cylinders and two spheres. The trajectories of
moving bodies were calculated to simulate the motion of floating ice floes which were conveyed
by an oncoming stream around the protrusion, and to predict whether the floating body would

Figure 2. Interaction between a translating spheroid and a platform.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 725–747 (1998)



NUMERICAL SIMULATION OF HYDRODYNAMIC FORCES 727

Figure 3. (a) Added-mass coefficients k and (b) their derivatives dk/dH for a sphere moving perpendicular to a plane
wall. (—) Analytic solution; (�) numerical solution.

be in contact with the support structure. For a more general Lagrange’s equation including a
free surface, one can refer to the works by Miloh and Hauptman [22], Miloh [23] and
Athanassoulis and Loukakis [24].

In the present work, Lagrange’s equation of motion is adopted to deal with the ground-ef-
fect problem. In particular, a prolate spheroid moving in the fore-and-aft direction at constant
speed, in the proximity of the flat ground with a protrusion is considered. The unknown source
strengths are distributed on the body surfaces. Application of the boundary conditions results
in a set of Fredholm integral equations of the second type. For the accuracy and convenience
of the numerical implementation, the singular integrals are regularized by the Gauss flux
theorem. The source strengths are solved by the iterative method after discretizing integral
equations using the Gaussian quadrature formula. The forces and moments acting on the
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moving spheroid are computed in terms of Lagrange’s equations of motion, in which the
required added masses and their derivatives are obtained using the generalized Taylor’s
formula. The Euler angles in the xyz-convention are introduced for the calculation of the
moments. Several step sizes and cruising heights will be considered. Our principal objective is
then to investigate the variations of the forces and moments acting on the moving spheroid.

2. MATHEMATICAL FORMULATION

The mathematical theory of boundary-integral method for the two-body interaction problem
can be found in the works quoted in the last section. For the sake of completeness, we outline
the algorithm in this section in a relatively compact pattern, but without losing the generality.
Consider a body translating with three degrees of freedom, U1, U2 and U3, without rotation in
the proximity of a fixed obstacle (Figure 1). The XYZ Cartesian co-ordinate system is fixed in
space. The formulation to be presented in the following will be slightly more general than
required in the next section, with only U1 remaining. The fluid is assumed to be incompressible
and non-viscous. The flow is irrotational and is at rest at infinity. There exists a velocity
potential f that satisfies the Laplace equation, 92f=0, and can be expressed as

f=Uifi, i=1, 2, 3, (1)

where fi is the unit velocity potential due to the ith velocity component of the body when
Ui=1 and other two velocities are zero. A repeated index indicates summation in Equation
(1). The kinematic boundary condition on the surface of moving body S1 is

(f

(n
)
S 1

=Uini, i=1, 2, 3, (2)

where ni denotes the ith component of the unit vector n� in the direction of the normal drawn
outward from the solid body. Also on the surface of the fixed body S2,

(f

(n
)
S 2

=0. (3)

Applying the method of surface source distribution, we have the well-known relationship at a
field point Q on the surface Si

(f

(n
)
Si

=2psQ−
&&

S 1+S 2

sP

(

(nQ

�1
R
�

dS, i=1, 2, (4)

where sQ and sP denote the source strengths at the field point Q and source point P
respectively, nQ the normal at the field point, and R the distance from the source point to the
field point. In order to remove the singularity as R=0 in Equation (4) we apply the Gauss flux
theorem, which states that the flux through a closed surface due to a unit source on the same
surface is 2p :

−
&& (

(np

�1
R
�

dS=2p, (5)

where (/(np represents the differentiation in the normal direction at the source point P.
Equation (4) can then be modified to the form

(f

(n
)
Si

=4psQ+
&&

S 1+S 2

�
sQ

(

(np

�1
R
�

−sP

(

(nQ

�1
R
�n

dS, i=1, 2. (6)
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These are Fredholm integral equations of the second kind. The integrand in the right member
of Equation (6) is set equal to zero when P coincides with Q. The source distributions can be
solved if the velocity of the moving body is provided.

The classical Lagrange’s equations for describing the motion of bodies in fluid are given by
Lamb [25]

d
dt
(T
(q; i

−
(T
(qi

=Qi, (7)

where T denotes the total kinetic energy, t is the time, q; i the generalized velocities, qi the
generalized co-ordinates and Qi the generalized forces. The total kinetic energy in the present
problem can be written as

Figure 4. (a) Added-mass coefficients k and (b) their derivatives dk/dH for a sphere moving parallel to a plane wall.
(—) Analytic solution; (�) numerical solution.
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Figure 5. Added-mass coefficients for a spheroid moving parallel to a plane wall. (—) Analytic solution; (�)
numerical solution.

2T=mUi
2+AijUiUj, i, j=1, 2, 3, (8)

where m denotes the mass of the moving body and Aij the added masses. The extended Taylor
theorem expresses added masses in terms of source distributions in the following [18]:

Aij= −m %dij+4pr
&&

xjsi dS, i, j=1, 2, 3, (9)

where m % is the mass of the fluid displaced by the moving body, dij is the Kronecker delta, r

is the fluid density, si is the surface source distribution on the body due to unit motion in the
ith direction, and xj is the local co-ordinate of si. We notice that (6)–(9) construct the basic
equations that are used to analyze the forces and moments exerted on the moving body or the
trajectories of motion. The following section provides numerical examples that may offer some
useful engineering applications.

3. PROBLEM FORMULATION

Let us consider the case of a prolate spheroid in transit near the infinite plane with a
protrusion (Figure 2). The spheroid translates with constant speed U in the fore-and-aft
direction parallel to the X-axis. The protrusion is a rectangle of length 2d and height h, and
extends to infinity at both sides. S1 denotes the surface of the spheroid and Si, i=2, . . ., 5, are
the sub-surfaces of the protrusion defined in Figure 2. The local Cartesian co-ordinates xyz are
fixed to the spheroid with the origin at the center and the x-, y-, X- and Y-axis in the same
vertical plane. The horizontal and vertical separation distances from the center of the spheroid
to the origin of the fixed co-ordinates XYZ are L and H, respectively. The main purpose of this
study is to simulate the constraining forces and moments acting on the spheroid in such a
physical situation. We denote the half length of the major axis of the spheroid by a and its
focal distance by c. Let h, u and 8 be the orthogonal confocal co-ordinate system defined by

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 725–747 (1998)
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x=c cosh h cos u y=c sinh h sin u cos 8 z=c sinh h sin u sin 8, (10)

where 05u5p and 05852p. The surfaces where h is a constant are confocal prolate
spheroids of revolution with common foci at the points (9c, 0, 0). Let h0 be on surface S1. We
have

Figure 6. Force and moment coefficients for a spheroid past a platform for varying d : (a) horizontal force coefficients;
(b) vertical force coefficients; (c) moment coefficients.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 725–747 (1998)
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Figure 6 (Continued)

a=c cosh h0, b=c sinh h0, (11)

where b denotes the half length of the minor axis of the spheroid.
The boundary conditions give

(f

(n
)
S 1

=U
(x
(n
)
S 1

=
U sinh h0 cos u


cosh2 h0−cos2 u
, on the spheroid, (12)

and

(f

(Y
(X, 0, Z)=0, (13a)

(f

(X
(9d, 0, Z)=0, on the protrusion, (13b)

(f

(Y
(X, h, Z)=0. (13c)

From the equations of motion (7), we can show that

F1=
1
2
(A1

(L
U2, (14)

F2= −
1
2
(A1

(H
U2, (15)

M3= −
1
2
(A1

(V3

U2, (16)
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where we have made A1=A11 for convenience. F1 and F2 denote the x- and y-components of
extraneous force acting on the spheroid through the center, M3 is the pitch moment, and V3,
the Euler angle, will be defined later. We may define the force and moment coefficients by

Figure 7. Force and moment coefficients for a spheroid past a huge platform for varying d : (a) horizontal force
coefficients; (b) vertical force coefficients; (c) moment coefficients.
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Figure 7 (Continued)

CF1=
F1

1/2 rU2pb2, (17)

CF2=
F2

1/2 rU2pb2, (18)

CM3=
M3

1/2 rU2pb2a
. (19)

The added-mass of the spheroid, A1, which is due to a unit velocity in the x direction, can be
obtained in terms of the generalized Taylor’s formula

A1= −m %+4pr
&&

S 1

xs1 dS, (20)

where m % denotes the mass of the fluid displaced by the spheroid, and x is the local co-ordinate
of the source strength s1. As usually defined in classical mechanics, the Euler angles are
independent parameters which serve to carry out the transformation from a given Cartesian
co-ordinate system to another. If the spheroid is allowed to rotate, the Euler angles V1, V2 and
V3 are in the xyz-convention, such that the first rotation is the pitch angle V3 about the z axis,
the second is the yaw angle V2 about the intermediary y axis, and the third is the roll angle V1

about the final x axis. This allows the relationship between the rotating body co-ordinates xyz
and the fixed-space co-ordinates XYZ to be expressed in the following manner [26]:

X−L= (cos V2 cos V3)x+ (sin V1 sin V2 cos V3 −cos V1 sin V3)y

+ (cos V1 sin V2 cos V3+sin V1 sin V3)z, (21a)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 725–747 (1998)
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Y−H= (cos V2 sin V3)x+ (sin V1 sin V2 sin V3+cos V1 cos V3)y

+ (cos V1 sin V2 sin V3−sin V1 cos V3)z, (21b)

Z= (−sin V2)x+ (cos V2 sin V1)y+ (cos V2 cos V1)z. (21c)

Figure 8. Force and moment coefficients for a spheroid past a thin wall for varying d : (a) horizontal force coefficients;
(b) vertical force coefficients; (c) moment coefficients.
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Figure 8 (Continued)

In the present case, however, the Euler angles are simply set to zero.
For convenience and clarity, let s %i denote the source strength of the field point (X %i, Y %i, Z %i ),

and si denote the source strength of the source point (Xi, Yi, Zi) on surface Si. Equation (6)
can now be written in the following forms according to the boundary conditions given in (12)
and (13):

U sinh h0 cos u %


cosh2 h0−cos2 u %
=4ps %1+

&&
S 1

(s %1D11* −s1D11)dS−
&&

S 2

s2D21 dX2 dZ2

−
&�

−�

& h

0

s3D31 dY3 dZ3−
&�

−�

& d

−d

s4D41 dX4 dZ4

−
&�

−�

& h

0

s5D51 dY5 dZ5, (22a)

0=2ps %2−
&&

S 1

s1D12 dS−
&�

−�

& h

0

s3D32 dY3 dZ3−
&�

−�

& d

−d

s4D42 dX4 dZ4

−
&�

−�

& h

0

s5D52 dY5 dZ5, (22b)

0=2ps %3−
&&

S 1

s1D13 dS−
&&

S 2

s2D23 dX2 dZ2−
&�

−�

& d

−d

s4D43 dX4 dZ4

−
&�

−�

& h

0

s5D53 dY5 dZ5, (22c)
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0=2ps %4−
&&

S 1

s1D14 dS−
&&

S 2

s2D24 dX2 dZ2−
&�

−�

& h

0

s3D34 dY3 dZ3

−
&�

−�

& h

0

s5D54 dY5 dZ5, (22d)

Figure 9. Force and moment coefficients for a spheroid past a platform for varying h : (a) horizontal force coefficients;
(b) vertical force coefficients; (c) moment coefficients.
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Figure 9 (Continued)

0= −2ps %5−
&&

S 1

s1D15 dS−
&&

S 2

s2D25 dX2 dZ2−
&�

−�

& h

0

s3D35 dY3 dZ3

−
&�

−�

& d

−d

s4D45 dX4 dZ4. (22e)

The element of surface of the spheroid is given by:

dS=c2(cosh2 h0−cos2 u)1/2 sinh h0 sin u du d8. (23)

Let Rij represent the distance from the field point (X %j, Y %j, Z %j ) to the source point (Xi, Yi, Zi),
where i, j=1, 2, . . ., 5, and can be written as

Rij=R(X %j, Y %j, Z %j ; Xi, Yi, Zi)=
(X %j−Xi)2+ (Y %j−Yi)2+ (Z %j−Zi)2, (24)

for example,

R11=R(X %1, Y %1, Z %1; X1, Y1, Z1)=R(L+x %, H+y %, z %; L+x, H+y, z)

=
(x %−x)2+ (y %−y)2+ (z %−z)2, (24a)

R12=R(X %2, Y %2, Z %2; X1, Y1, Z1)=R(X %2, 0, Z %2; L+x, H+y, z)

=
(X %2−L−x)2+ (H+y)2+ (Z %2−z)2. (24b)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 725–747 (1998)



NUMERICAL SIMULATION OF HYDRODYNAMIC FORCES 739

For convenience, we also write (/(ni=(/(nP and (/(n %i=(/(nQ on surface Si. D*11 is then
defined by

Figure 10. Force and moment coefficients for a spheroid past a platform for varying W : (a) horizontal force
coefficients; (b) vertical force coefficients; (c) moment coefficients.
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Figure 10 (Continued)

D11* =
(

(n1

� 1
R11

�
=
(

(h

� 1
R11

� 1

c
cosh2 h0−cos2 u

= −c
cosh h0 sinh h0


cosh2 h0−cos2 u

1−cos u cos u %−sin u sin u % cos(8−8 %)
R11

3 , (25)

and Dij, where i, j=1, . . ., 5, is defined by

Dij=
(

(n %j

� 1
Rij

�
. (26)

If i=1 and j=1, then

D11=
(

(n %1

� 1
R11

�
= −c

cosh h0 sinh h0


cosh2 h0−cos2 u %

1−cos u cos u %−sin u sin u % cos(8−8 %)
R11

3 ,

(27)

otherwise,

Dij=Dj(X %j, Y %j, Z %j ; Xi, Yi, Zi), (28)

where

D1(X %1, Y %1, Z %1; Xi, Yi, Zi)= −
Bi

Ri1
3

1


cosh2 h0−cos2 u %
, (28a)

D2(X %2, Y %2, Z %2; Xi, Yi, Zi)=
Yi

Ri2
3 , (28b)

D3(X %3, Y %3, Z %3; Xi, Yi, Zi)= −
d−Xi

Ri3
3 , (28c)

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 725–747 (1998)



NUMERICAL SIMULATION OF HYDRODYNAMIC FORCES 741

D4(X %4, Y %4, Z %4; Xi, Yi, Zi)= −
h−Yi

Ri4
3 , (28d)

D5(X %5, Y %5, Z %5; Xi, Yi, Zi)=
d+Xi

Ri5
3 , (28e)

and where

Bi= (L−Xi) sinh h0 cos u %+ (H cos 8 %−Yi cos 8 %−Zi sin 8 %) cosh h0 sin u %

+c cosh h0 sinh h0, (29)

for example,

B2= (L−X2) sinh h0 cos u %+ (H cos 8 %−Z2 sin 8 %) cosh h0 sin u %+c cosh h0 sinh h0,
(29a)

B4= (L−X4) sinh h0 cos u %+ (H cos 8 %−h cos 8 %−Z4 sin 8 %) cosh h0 sin u %

+c cosh h0 sinh h0. (29b)

In the numerical computation, we discretized (22a)–(22e) by the Gauss–Legendre quadrature
formula and calculated the source distribution by the Gauss–Seidel iterative method.

To find the force and moment coefficients, we need to evaluate the derivatives of added-
mass. From (20), we have

(A1

(L
=4pr

&&
S 1

x
(s1

(L
dS, (30)

(A1

(H
=4pr

&&
S 1

x
(s1

(H
dS, (31)

(A1

(V3

=4pr
&&

S 1

x
(s1

(V3

dS, (32)

where (s1/(L, (s1/(H and (s1/(V3 are obtained from (22a)–(22e) by taking derivatives with
respect to L, H and V3, respectively. Consequently, we have to solve three sets of integral
equations for two components of the force and the pitch moment. We list the first set in the
following:

0=4p
(s %1
(L

+
&&

s 1

�(s %1
(L

D11* −
(s1

(L
D11

�
dS−

&&
s 2

�(s2

(L
D21+s2

(D21

(L
�

dX2 dZ2

−
&�

−�

& h

0

�(s3

(L
D31+s3

(D31

(L
�

dY3 dZ3−
&�

−�

& d

−d

�(s4

(L
D41+s4

(D41

(L
�

dX4 dZ4

−
&�

−�

& h

0

�(s5

(L
D51+s5

(D51

(L
�

dY5 dZ5, (33a)

0=2p
(s %2
(L

−
&&

S 1

�(s1

(L
D12+s1

(D12

(L
�

dS−
&�

−�

& h

0

(s3

(L
D32 dY3 dZ3

−
&�

−�

& d

−d

(s4

(L
D42 dX4 dZ4−

&�
−�

& h

0

(s5

(L
D52 dY5 dZ5, (33b)
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0=2p
(s %3
(L

−
&&

S 1

�(s1

(L
D13+s1

(D13

(L
�

dS−
&&

S 2

(s2

(L
D23 dX2 dZ2

−
&�

−�

& d

−d

(s4

(L
D43 dX4 dZ4−

&�
−�

& h

0

(s5

(L
D53 dY5 dZ5, (33c)

0=2p
(s %4
(L

−
&&

S 1

�(s1

(L
D14+s1

(D14

(L
�

dS−
&&

S 2

(s2

(L
D24 dX2 dZ2

−
&�

−�

& h

0

(s3

(L
D34 dY3 dZ3−

&�
−�

& h

0

(s5

(L
D54 dY5 dZ5, (33d)

0= −2p
(s %5
(L

−
&&

S 1

�(s1

(L
D15+s1

(D15

(L
�

dS−
&&

S 2

(s2

(L
D25 dX2 dZ2

−
&�

−�

& h

0

(s3

(L
D35 dY3 dZ3−

&�
−�

& d

−d

(s4

(L
D45 dY4 dZ4, (33e)

where the source strengths have been solved previously in (22a)–(22e). The other two sets of
equations can be manipulated in a similar manner and will not be listed here. However, it is
noteworthy that (21a)–(21c) have been used to solve (s1/(V3. Again, these equations were
discretized by Gauss–Legendre quadrature formula and the unknowns were calculated using
the Gauss–Seidel iterative method.

The validity of the present method and corresponding numerical program was checked in
Figures 3 and 4 for the problems of a sphere with radius a moving perpendicular and parallel
for a fixed plane boundary, respectively. The analytical data of added-mass coefficients and
their derivatives were provided by Guo and Chwang [21], and Landweber and Shahshahan
[27]. The added-mass coefficient k is defined by the added-mass divided by the mass of the
same volume of fluid. The grid distribution on the sphere was set to 20×40 in u and 8 axes.
The grid distribution on the plane wall was set to 40×40 for 05x55a and −5a5x50, and
similarly for −5a5z55a. In Figure 5, we compared the added-mass coefficients of a prolate
spheroid moving axially near a plane wall with that obtained by the method of expansion of
harmonic functions developed by Farell [28]. The grid distribution on the spheroid was set to
30×40 in u and 8 axes and the grid distribution on the plane wall was the same as that in the
previous case. The comparisons in Figures 3–5 show the preliminary success of the proposed
method.

4. NUMERICAL RESULTS

We are now in a position to investigate the core subject, the extraneous forces and moments
acting on a prolate spheroid under the circumstances considered. The ratio of length to
mid-section diameter, a/b, of the spheroid was set at 5.0. The grid distribution on the spheroid
was 30×40 in u and 8 axes, respectively, in all study cases. The grid points on the protrusion
depend on the size itself and the relative position of the protrusion to the spheroid. However,
we found that, in general, the grid distribution should be denser in the region where the
distance between the protrusion and the spheroid is shortest, especially when the spheroid is
moving very close to the protrusion. In other words, we divided the surface of the protrusion
into several sub-regions and put different grid points in them. This procedure is important, not
only for greater accuracy, but also for the convergence of the results. All calculations were
carried out on the HP-Apollo 730 Workstation. About 15 iterations for each time step were
required to obtain an absolute accuracy of 10−6 for the source strength. The grid points for

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 725–747 (1998)



NUMERICAL SIMULATION OF HYDRODYNAMIC FORCES 743

the strength magnitude of less than 10−6 were discarded when improper integrations were
encountered in (22a)–(22e). We also found numerically that the accuracy of the derivatives of
the source is :10−5 in the present case.

Figure 6(a) shows the coefficients of horizontal force for the spheroid moving from left to
right for five cruising heights, or five separation distances, d/b=0.5, 1.0, 2.0, 3.0, 4.0. The
protrusion, which we took at a comparable size to the spheroid, measures w/a=2 in length,
where w=2d, and h/b=2.0 in height. The spheroid experiences a resistance force as it
approaches the protrusion and a pushing force as it leaves. As to be expected, the magnitude
of resistance increases when the body is approaching the step, and the smaller the clearance is,
the larger the resistance becomes. It is of interest to note that the smaller peak at Ut/a:90.2
becomes more significant for the smaller clearance. The larger first peak value indicates that
the spheroid requires increased force to overcome the effect of the presence of the protrusion
at the initial stage for retaining constant speed. Figure 6(b) plots the variation of vertical force
for several cruising heights. There is a greater, faster increase in force as the body approaches
the protrusion for smaller values of clearance. For example, the force increases about seven
times as the body moving from Ut/a= −3.0 to 0 for d/b=0.5, but only about two times for
d/b=4.0. Figure 6(c) shows the variation of extraneous moment of the spheroid. There exists
a constraining counterclockwise moment in the approaching region and a clockwise moment
in the leaving region.

Two limiting cases were considered next and the results are shown in Figures 7 and 8. The
first one is the case of a spheroid past a huge protrusion. In Figure 7 the left half is for the
approaching case and the right half for the leaving case. Examination of Figure 6(a) and
Figure 7(a) shows that the magnitude of the original smaller peak increases remarkably and is
comparable with the larger peak. In practical applications this phenomenon indicates that the
crew may sense two violent shakes in a short distance when the submersibles are approaching
or leaving the sea-bed with a huge protrusion, and the clearance is small. Figure 7(b) reveals
that the moving body begins to experience an attractive force when the center of the body is
at a position which is one body length ahead of the protrusion, then the force reaches the
limiting value within a distance of two body lengths. Figure 7(c) shows that the maximum
moment occurs when the body is at the top of the corner of the protrusion. Figure 7 exhibits
clearly that disaster may befall the submersibles moving very close to a huge protrusion, due
to the sudden change in the extraneous forces and moment over a very short distance, only two
body lengths in the present case. The second limiting case is the problem of a body
approaching a thin wall, such as a breakwater for practical considerations. Figure 8 displays
the force and moment coefficients for w/a=0.2 and several clearances. The magnitudes of
force and moment coefficients are reduced to :1/10 of that in Figure 7. It seems like that the
hydrodynamic effects of a thin wall on the body are not so significant as that of a huge
protrusion.

Finally, we studied the effects of the size of the protrusion on the moving body. The
clearance was kept at d/b=1. In Figure 9 the length of the protrusion was set at w/a=2, and
five heights ranging from h/b=2 to � were considered. It can be observed from Figure
9(a)–Figure 9(c) that the curves for h/b=10 almost coincide with the curves for h/b=�. This
indicates that the body obtains a limiting influence from a protrusion which has a height five
times the diameter of the mid-section of the body. Figure 9(a) also shows that the peak
resistance not only increases, but also occurs earlier in the approaching region, and delays in
the leaving region when the height of the protrusion increases. In Figure 10 the height of the
protrusion was kept at h/b=2 and several lengths were considered. The curves were plotted
only for the approaching region in this case. Figure 10(a) shows that the first peak resistance
for w/a=2 almost reaches the limiting value, as does the second peak resistance for w/a=5.
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It is shown in Figure 10(b) and Figure 10(c) that the vertical force and moment reach the
limiting values for w/a=5 and w/a=3, respectively.

5. DISCUSSION AND CONCLUSIONS

In this paper, we have presented the mathematical formulation for the unsteady ground-effect
problem under the framework of the Lagrange’s equation of motion in connection with the
generalized Taylor’s formula. Application of the formulation has been depicted in detail using
a test example. The boundary-integral method was adopted and the original singular integral
equation was regularized, which is of importance for the numerical implementation. The
unknowns, source strengths and their derivatives, were solved numerically in terms of the
Gauss–Legendre quadrature formula and the iterative method.

The efficacy of the proposed method has been examined using a sphere moving perpendicu-
lar and parallel to a plane wall, respectively; and a prolate spheroid moving parallel to a plane
wall. The computed added-mass coefficients and their derivatives have been compared with the
theoretical solutions. Thereafter, the hydrodynamic interactions between a moving spheroid
and a plane wall with a protrusion have been investigated systematically. Several factors which
influence the interaction effects have been studied, such as the clearance and the size of the
protrusion. A general understanding of the physical problem considered has been obtained
from the variations of the horizontal resistance, the vertical force and the pitch moment, and
may extend the results to some engineering applications, for example the motion of sub-
mersibles in the proximity of the seabed. The first result, which is an obvious one, is that the
smaller clearance induces more significant effects on the spheroid. Secondly, for the case of a
huge protrusion, the magnitudes of the force and moment coefficients are about ten times
greater than in the case of a thin wall. For a constant length and varied height of the
protrusion, the corresponding interactions reach the limiting values at a height about five times
the diameter of the mid-section of the spheroid. On the contrary, for a constant height and
varied length, the limiting values occur at a length about three times of the body length. For
a body approaching a huge protrusion, the results show that the body experiences two shakes
in the direction of the major axis, due to two peak values of the resistance, a vertical attractive
force, and a bow-in moment in the short distance of about two body lengths. This phe-
nomenon is more significant for the body moving closer to the protrusion. Therefore, the
precautions of the crew may avoid the possible calamity for submarines cruising in the region
near the seabed.

Regardless of the slender-body assumption mentioned in the introduction, in general there
are three solution methods for the dynamic effects due to the unsteady motion of one body,
or multiple bodies through an inviscid and incompressible fluid. The first is the Lagrange’s
equation of motion, which expresses the forces and moments in terms of added masses and
their derivatives. The second is an application of the unsteady Bernoulli equation, which
expresses the forces and moments by integrating the pressure over the body surfaces; and third,
initiated by Lagally, expresses the forces and moments in terms of singularities and gradients
of velocity potential. The first solution method was adopted in the present study. The second
method yields the expression of the ith force component acting on the moving body with
surface S in the form

Fi=
&&

S

Pni dS= −r
&&

S

�(f
(t

+
1
2

9f ·9f
�

ni dS. (34)
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A major difficulty with equation (34) is the calculation of the unsteady term, because the body
is in motion. Some methods have been proposed to surmount the nuisance [29,30]. For an
easier numerical calculation (34) can be rewritten as

Fi= −r
d
dt

&&
S

fni dS+r
&&

S

�(f
(n

ui−
1
2

9f ·9fni

�
dS, (35)

where u� =9f. The unsteady Lagally theory [31,32] yields the expression of the ith force
component acting on the moving body at a constant speed in the following:

Fi= −4pr
� d

dt
&&

S

sxi dS+
&&

S

sui dS
�

. (36)

We can now compare the expressions in (14), (15), (35) and (36) for the three alternative
methods. Application of the Lagrange’s formulation requires the added masses and their
derivatives, or singularity strengths and their derivatives to be solved after applying Taylor’s
formula. For the method of pressure integration, the velocity potential and the corresponding
derivative with respective to time, and the velocity vector 9f on the body surface must be
solved. As regards the Lagally theory, equation (36) shows that the singularity strengths and
the corresponding time derivatives, and the velocity vector must be solved. It seems that the
Lagrange’s formulation is more convenient for the numerical implementation, especially based
on the regularized integral equations which facilitate the direct use of quadrature formulas.
The regularization technique demonstrated in Section 2 can also be applied to the methods of
the Bernoulli equation and Lagally theory with one exception, that the computation of the
velocity vector requires particular care in view of the Cauchy singularity in the kernel [33].
Since the corresponding Cauchy singularity can not be removed at the present stage, the merit
of the direct use of quadrature formulas is then lost. In view of this fact, no attempt was made
to repeat the numerical simulation using the latter two methods.

Theoretically, the algorithm developed in the present study could be extended to treat more
general motion of a body (or bodies) in more complex environments. It is known, however,
that most of the computing time for the numerical implementation is expended on setting up
the matrix itself, not solving it, after the integral equations are discretized into a linear system
of algebraic equations. Some other efficient algorithms for reducing the computational burden
and storage are then required, particularly for multiple-body interaction problems. The global
methods, which define the unknown functions globally as smooth functions on the integration
domain, for example the Chebyshev polynomials, may be one solution [34,35]. Instead of
solving the unknown functions directly, we are computing the coefficients in the function
expansions. Finally, it is worth noting that the potential flow theory provides the first-order
approximation of the hydrodynamic effects, as mentioned in the introduction, providing the
moving body is not very close to the obstacles. The exact region of validity of the theory could
be quantified by the experiments. It is recognized however that the flow data around a moving
body may not be obtained easily. Particular attention should be paid to the relevant
experimental procedures [36].
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APPENDIX A. NOMENCLATURE

The following symbols are used in this paper:

Aij added masses
half length of the major axis of the spheroida
half length of the minor axis of the spheroidb

c focal distance of the spheroid
d half length of the protrusion

vertical separation distance from the center of the spheroid to the origin of theH
fixed co-ordinates XYZ

L horizontal separation distance from the center of the spheroid to the origin of
the fixed co-ordinates XYZ
mass of the moving bodym

m % mass of the fluid displaced by the moving body
outward normal at the body surfacen
ith component of the outward normal nni

source pointP
Q field point
Qi generalized forces
qi generalized co-ordinates

generalized velocitiesq; i
R distance between the field point and the source point
S1, S2 surfaces of body l or 2
T total kinetic energy
t time co-ordinate
Ui ith velocity component of the moving body

length of the protrusionw
X, Y, Z fixed-space Cartesian co-ordinates
x1, y1, z1 Cartesian co-ordinates fixed in body 1
dij Kronecker delta
h, u, 8 orthogonal confocal co-ordinate system

density of the fluidr

s surface source distribution
f velocity potential
fi velocity potential corresponding to Ui=1 and other velocity components are

zero
Vi Euler angles
92 Laplacian operator
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